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ERROR ANALYSIS OF HOUSEHOLDER TRANSFORMATIONS AS APPLIED
TO THE STANDARD AND GENERALIZED EIGENVALUE PROBLEMS

By Robert C. Ward
Langley Research Center

SUMMARY

Backward error analyses of the application of Householder transformations to both
the standard and the generalized eigenvalue problems are presented. The analysis for
the standard eigenvalue problem determines the error from the application of an exact
similarity transformation, and the analysis for the generalized eigenvalue problem
determines the error from the application of an exact equivalence transformation.
Bounds for the norms of the resulting perturbation matrices are presented and compared
with existing bounds when known.

INTRODUCTION

Examination of the eigenvalue algorithms which are recommended by Wilkinson
and Reinsch (ref. 1) for solving the various classes of eigenvalue problems reveals that
Householder transformations, sometimes referred to as elementary unitary Hermitian
transformations (see ref. 2), are used extensively in these algorithmé. A Householder
transformation can be represented by the expression I - —::,- vwT where I is the iden-
tity matrix, v is a vector, and c is a scalar equal to (1/2)vTv. These transforma-
tions are normally used to transform a vector x {usuzlly a portion of a column of a
matrix) into a vector y which has only one nonzero component (usually the first

component).

wilkinson (refs, 2 and 3) and Ortega (ref, 4) have published detailed error analy-
ses of the application of Householder transformations in the standard eigenvalue prob-
lem based on the same general approach of determining the error from the application
of an exact unitary similarity transformation, These error analyses are important and
have earned their reputation in numerical linear algebra. Since eigenvalues are pre-
served by similarity transformations whether these transformations are unitary or not,
another realistic approach is one of determining the error from the application of an

exact similarity transformation,



In this paper, this latter approach is examined and a backward error analysis is
presented first for Householder transformations in the standard eigenvalue problem.
Then, a backward error analysis is presented for these transformations using the same
approach but applied to the generalized eigenvalue problem,

SYMBOLS

When one symbol is related to another symbol, this relationship is identified
clearly by the context in which the symbol appears, and although some symbols have
multiple definitions, the context makes the meaning of the symbol unambiguous.

A B,D nxXn real matrices

E F,GH,

X,Y,Z } n X n perturbation matrices

I identity matrix

P,Q,Z n X n Householder transformation matrices

S a scalar used to compute a Householder transformation

d scalar in a Householder transformation

ij,kr non-negative integers

n order (size) of the matrices

P,q scalars used in lemma 1 and lemma 2

a,u,v nx1 vectors

i number of binary digits used to represent the mantissa of a floating-point
number in a computer

6q,5u,w n X1 error vectors

£,1 scalars representing the relative error in a computation



A an eigenvalue

Superscripts:

-1 inverse

i exponentiation to ith power

T transpose

Subscripts:

i ith item in a sequence or ith component of a vector
ij element in (i,j} position of a matrix

Special notation:
o) order of magnitude

| | absolute value (If V is a vector, |V| is the vector with components |Vi|-
I A isamatrix, |A| is the matrix with elements |a-1j].)

Il unspecified norm

' 1/2
[ 1, two norm (If Vv is a vector, |{Vll, is the value (z ;Vi|2> 2 & A is
i
a matrix, l|A|| 5 is the value (m_ax ?ti)l/z where A; are the eigen-

i
values of ATA_)

Fuclidean norm of a matrix ||A|| g is the value (Z laij12>1/2
ij

I 1lg

- replacement symbol (computer equal sign)

A tilde (-) over a matrix indicates an n Xn matrix related to that matrix.

A prime (') over a matrix indicates an nxXn matrix related to that matrix.



A horizontal bar (7) over a symbol indicates the computed value, whereas an exact
number is indicated by a symbol without the bar,

Other mathematical notation has its usual meaning,
PRELIMINARIES

A basic assumption which is used in the error analysis is the following inequality:
n2-t < 0,006 (1)

where n is the size of the matrix and t is the number of binary digits used in rep-
resenting the mantissa of a floating-point number in the computer. This assumption
compares with that of n2 -t < 0,00032 used by Wilkingon in reference 3 and

n2-t < 0,008 used by Wilkinson in reference 2. Under the assumption given by equa-
tion (1), n would be restricted to be less than 1.68 X 1012 on the Control Data series
6000 computer systems which have 48 binary digits in the mantissa of a floating -point
number. In most scientific computers, the restriction imposed by limited computer
memory therefore automatically assures that equation (1) will be satisfied.

In addition, the fbllowing inequality is assumed to be valid:
2-t s 3-11 (@)

or tz11. This assumption compares with that of 2-t < 2-20 ysed by Wilkinson
(ref. 3) and 2-t=106 used by Ortega (ref. 4).

The following two lemmas are used extensively in the analyses.
Lemma 1: If 0 <p < 16, then

(1+p2H" <1+ (1.06)np2-t
Proof: Let q=p2't.

By the hypothesis 0 <p, then 0<q and

2 3
1+q<eq=1+q+%,-+g—,+.

Therefore,
(1 +q)" <enq
Thus,

nq _ g
(1+gR<1+ nq[e_“—nq ] _ (3)



If the exponential expansion is used, then

(ng)2 (ng)3
T

eld=14+nq +

and

3

2
efd-1_,,nq, (g% (ng)

nq +-2T+-———3: ] + ..

Comparing these two expansions term by term and using the hypothesis that 0 <p or
0 < q, yvields

e -1 _ 1(.ng _
——nq—'— 1<2(E 1)

or

o111
e?-1cl(png , 4
g <2(e +1) (4)

Thus, from equation (3)

(1+g)n<1 +,nq[-%(enq'+. lﬂ (5)

When the assumption given in equation (1) and the hypothesis p < 16 are used, then
ng < 0.1

and

(e + 1) < 1.0526 | | ' )

Combining equations (5) and (6) and the definition of ¢q produces the desired result,
Lemma 2: I 0 <p <186, then
(1 -p2-9™ > 1 . (1.06)np2-t

Proof: Let q-= p2‘t.

By the assumption given in equation (2) and the hypothesis 0 <p < 18, then
0 <q<1 and the following expansion is valid:

(1-q)n=1-nq+l(%;_llq2_n(“'g)‘("'2)q3+_ .. sngh-liqn
= _ (HCI)Z - (ﬂCL)S _ (“q)n'l (ng)n ng
=1-nq -5 3 T T 1Y T Z2-e



Thus,

g
n e -
-9 ”‘“q[n“a“]

Since equation (4) is based only on the hypothesis of 0 <p or 0 <q, then this equation
is also valid here. Hence,

(1-an>1- nq[g(e“q +1) Q0
When the assumption given in equation (1) and the hypothesis p < 16 are used, then

ng < 0.1
and

%(enq + 1) < 1,0526 (8)

Combining equations {7) and (8) yields the desired result,

ERROR ANALYSIS OF HOUSEHOLDER TRANSFORMATIONS
IN THE STANDARD EIGENVALUE PROBLEM

The error analysis for Householder transformations in the standard eigenvalue
problem Ax =Ax is subdivided into the analysis of three errors. First, the error
from computing a similarity transformation under exact matrix multiplication is pre-
sented. Then, the error in the matrix multiplication is analyzed. Finally, these results
are combined and an error analysis of a sequence of Householder similarity transforma-
tions is presented.

Error Analysis of Similarity Transformation

Let a computed Householder transformation P; be given in terms of a scalar &
and a vector v by

P.=1-

i vt )

o=

(Details concerning the derivation of Householder transformations are found in ref. 2,)
Because Householder transformations are theoretically unitary and hermitian, similarity
transformations are performed by premultiplying and postmultiplying a matrix by Pj

as defined by equation (9),

Consider the problem of applying the Householder transformation P; to Ai-l _
as a similarity transformation and denoting the resulting matrix by Ai where the



matrix multiplications are computed exactly; that is,

Aj = PijAj 1Py
This expression will be a similarity transformation if Pj = Pi‘l. Let

P;= Pil+ E (10)
Then

Aj= (P! + Ei)Aj.1P; = Prl(A 1 + PiEiA; 1P

If a bound for HP EjA;_ 1“ could be found, then this would be a bound on the perturba-
tion added to Aj.] in order to make Aj_q and A; similar matrices.

Theorem 1: Let e be the relative error in computing & given the vector ¥;
that is,
c=c{l+¢

where

e}
il
DIt
<}

—
<

Then
Ipdl, = 1+ 20el + Ol

Proof: Since Pj; is hermitian, ”Pil Iz = m_axlhj‘ where A; are the eigenvalues
]
of Pj. The Householder transformation Pj has an eigenvalue equal to 1 with multi-
plicity of n - 1 and the remaining eigenvalue is 1 - % v1¥, Thus,

il = max{l,ji -1 GTGD

Using the hypothesis €= c{l +¢ with c= % vIv and the fact that the transformation
would not be applied if ¥I¥ =0 yields

||P1H2“ max{ |1 -1+e

} 1+ 2lel + 0(62)

Theorem 2: Let ¢ be as given in theorem 1. Then

|Pelliy = 1+ 216l + Ol



Proof: Since P-l'1 is hermitian, I’Pi‘1”2=mjax[hj[ where 2; are the eigen-

values of Pi-l. Also the eigenvalues of P-l-1 are the reciprocals of the eigenvalues
of Py. Thus,
-p -1
1797}

Sl
Using the hypothesis ¢=c¢(l +¢) with c= % 7T% and the fact that the transformation
would not be applied if ¥1v=0 produces

e, - 2] e fpet] £ 1420+ 0l

Note that a formal expression for Pi'l can be givan; that is,

P{1=I4’--1—WT (11)

Theorem 3: Let € be as given in theorem 1. Then

”EIHE < 4(el + Oesd)

Proof: From equations (9), (10}, and (11),

Eilig = lert - 2l

“I+__1_..ﬁrT_1 +1g5T
C -viv c

E

[

1
Lol
1
<
=
<1
+
€31

=|—1_

=T =
— — = Vv
C—VTV

) et

Because of the definitions of ¢ and ¢, the norm may be written as

< 41l + Ofjel?)

st | 1 + 1 [+T% = [ 2_ | 2
E- é TV(1+E)—V7T\7 %\?Tf’(l.pe)‘ sl+e 1 +¢f

2

- 4¢
-l+¢

Note that Parlett (ref. 5) has presented a similar result to theorem Jina shghtly differ-
ent context, '



Thus, as theorem 3 shows, a bound for the norm of the perturbation resulting
from one Householder similarity transformation with exact matrix multiplication can
be exhibited. Since P; is a hermitian and normal matrix, then |[PiX||, = HPl“g“XHE
for any matrix X, and

[PiEiAi-al|g = (2] el l1A-1]

= [1 + 2 + 0(62)] [:4IE| +.O(IE|'31;; ”Ai—IHE
=41l |[Ai-1l, + Ofler2

For small ¢, an approximate bound can be given; that is,

) - i— I
R a2

All that is needed now is a bound on ¢; that is, a bound on the relative error in
computing ¢ given the vector v. Since the vector v differs from a vector X
already in the computer by only the first component, the following algorithm, suggested
by Parlett (ref. 5), for computing ¢ should be used to obtain a small relative error e;

(1) §«~%92+%21. ., 45,2
2 3 n

If S=0, skip this transformation.

(2) f!El - sqr’t(:il2 + é)

(3) k- - [k| sign(zy)

It is assumed that the computations are made with a 2t-digit acecumulator (Wilkinson in
refs, 2 and 6 uses the notation flyg for such computations) and that § computed in
step (1) retains its 2t digits for use in step (5).

From the information in reference 6 and the fact that the multiplication of two
t-digit numbers is exact if a 2t-digit answer is retained, the computed value of 8 is
given by the following equation:

S = izz(l + €9) +i32(1 +eg) +. . +:En2(1 + €p)
where

(1 -%2*21:)“-2 =1+ € £ (1 + % 2_2t)n—2



and

1- n+l-r
(_%Z-Zt)n"' r§1+er§(1+-g-2'2t)+ (r=3,4,... n)

Since a bound is desired for the relative error in computing ¢ given the vector ¥,
the error in computing vy does not enter in this analysis. Thus, the analysis proceeds

to step (5) of the algorithm.

From the information in reference 6 and the foregoing assumptions,

\712 +8= \712(1 + €4) +JE22(1 + 62) +}E32(1 + 63) ...t inz(l +€n)
where
(1 —%2‘2t) Sl+g s (1+-%2'2t)
(1 - % 2‘2t)n_1 El4egs (1 + % 2'2t)nh1
and
3 ..2t)n+2‘r< - 3 .0t n+2.r
L-32 Slreps 1+32°% (r=3,4,...n)

A bound on |e3f can be obtained by inspection, and bounds on legi and ey can be
obtained by applying lemmas 1 and 2 with p = % 2-t. The bounds are as follows:

IEII < % 9-2t

el = 3(1.08)(n - D22t

el = 3(1.08)(n + 2 - )22 (r=34,..

Therefore,

612 +8= (1?12 +222 +7232 ...+ inz)(l + EO)
where

<3 -2t
|€0| 2(1.06)H2

Since dividing by 2 in step (5) introduces no error on a binary computer, an expression
for ¢ can be obtained; that is,

10



(‘3:%(‘7124_{;22 +i32+ ... +in2)(1+60)(1 +1)

where

o] < %(1.06)112-2t

and
mi <2t
The error 7 is due to rounding to single precision.

When the assumption given in equation (1) is used, the error reflected in ¢y is

overshadowed by the error 7. The exact value ¢, given the vector ¥, would be equal
1

to i(ﬁ 24 )Ezz + }232 +.. .4 :Enz), and then the relative error in computing ¢ is
bounded by 2‘t; that is,
i = 2-t (13)

Thus, equation (12) representing a bound for the norm of the perturbation resulting from
one Householder similarity transformation with exact multiplication can now be given by

Ipimds g < @2 i

Note that the error bound given for ”P - P_IHE of (4)2_t may be compared
with the error bound given by Wilkinson (ref. 2) for ||P - P! ||2 of (9.01)27' where
Pt =1- %VVT. Then, in a sense, PAP is roughly twice as close to being an exact
similarity transformation as it is to being an exact unitary similarity transformation,

‘Error Analysis of the Matrix Multiplication PjA;j_1P;

In the previous section, the errors made in the matrix multiplications PiAi—lpi
were ignored, In this section, these errors are analyzed.

Let Fj be the error in the computation of P;A;_Pj; that is,
Aj = PiAj_1P; + Fj (14)
The error in the premultiplication by P; is now considered. Wilkinson (ref, 2) has
presented an error analysis of this premultiplication under a slightly different assump-

tion for n2-t as explained previously. This analysis is very similar to that of
Wilkinson,

Let P=P;=1I- % vvT, A=Aj_1, and B=PA. (Notethat ¢ and v do not
have bars over them, Since this section is concerned with the matrix multiplications

11



after P; is formed, the analysis assumes that ¢ and v are exact and not computed
values with errors,) Then, the premultiplication algorithm becomes

(1 T -1vTa

(2) B-A -val
It is assumed, as in the previous section, that the computations are made with a 2t-digit

accumulator,

When the information in reference 6 and the fact that the multiplication of two
t-digit numbers is exact if a 2t-digit answer is retained are used, the ith component of
the computed value of uT in step (1) is given by the following equation:

3T = lE’lall (1 + 51) + V2321(1 + 62) ..+ Vnani(l + enﬂ (1 + Eo)
where

(1 —% 2'2'3)[1-1 El+¢ = (1 + % 2'2t)n-1

1-3 2-2t)“+1'r Slvers(1+3 z—zt)n+1‘r (r=2,3,.. .0
and

(1-2-t)§1+50§(1+2-t)

Application of lemmas 1 and 2 with p = 3 9-t yields a bound for ,EII and |er| that
can be expressed by (1 06)(n 1)2'2t. A bound for |gg| can be obtained by inspec-
tion to be 2-t. Therefore

0T = wT(1+eg) + @y

where

il £5(1.08)(n - D2 + 29 vy agy + frallagil + - - - + Voljeni]
Hence,

5T - o] = 24yt + 310800 - 12721+ 2- % ]
and

[ - ulig = 2-puily + 3(1.08)(n - 12240 + 29wl oAl g
With the assumption given by equation (1), the last expression becomes

lullg = I19 - ulip = 2-tiliy + (0.01)2-t Livlly lalig (15)

12



The (i,j) component of B in step (2) is given by the following equation:

by = [y m) -vig{Leng)Leng 0
where |

(1-%2'2t)r§1+7}r§(1+%.2“2t)r (r=1, 2)

-2 s1495s(+2Y
A bound for |171| and Inzl is then %2’2t and a bound for ]770[ is 2-t, Therefore,

bij = bij {1 + ng) + [aijnl - Viujy - viduj{l + "2)](1 + 1)
Thus,

‘51] - b'lj] = 2'tlbij! + l:% 2'21: |a-1j‘ + % 2'2t|ViIIUj| +. |V'1I ’50.]" (1 + % 2'2t):l (1 + 2"1:)

B - B =2-tB + [% 2-2t(A + 3 2 2 vlluTl + vl ouT] (1 +3 2-2t) (1+2Y

and

- ) .l
B - Bllg = 2-t|IB|l E* [% 2—?t|IAIIE + % 2-2t|[v|lollully + anzl_lo_ullz(l +3 2—2_':)_ (_1 + 2-t)

This bound would be more convenient and usable if it could be expressed in terms
of [|Allg. From the definition of B, theorem 1, and equation (13), a bound for [|Bllg
in terms of HA“E can be obtained by the following sequence:

IBllg = IPAllg = [[PllofAllg < [ + )2-8lallg (16)

In the proof for theorem 1, % 7T is bounded by 2+ 2¢ or 2(1+2-Y), Therefore,
the following sequence is valid:

[iviiglhully = Ljiviip2/lall g = L vTv Al g = 2t +'2-9)lallg

When equation (15) and the foregoing sequence are used, the following sequence is obtéined
to bound |Iviig|l6ully:

vflgllully = llvil_z[z—tuuu.z + (0.01)2-t %,HVHz”Af;I% o

= 2-0@ [+ 2-[lallg + 0.00(2- Y@ + 2-9]llg = 2.03)2-Y|4]| g

13



Abound on [B - Bllg can now be obtained in terms of ||All g; that is,

”ﬁ - B”E

A

2-t[1+ (@229 + (14 z-t)[% 2-2t + 3 2-2429)(1 + 2-Y

s (143 z-Zt)(z.os)z-E] llallg

A

(3.04)2-t]|Al|g (17)

This bound compares with Wilkinson's bound (ref. 2} of (3.35)2-Y|A|lg under a slightly
less stringent assumption for n2-t,

The error analysis for the postmultiplication by P;j is very similar to the pre-
multiplication. The steps in the postmultiplication algorithm are

=~ 1¢
(1) q cBV
(2) Ai—ﬁ-c-lvT

I 2t-digit accumulators and lemmas 1 and 2 are used, the ith component of the computed
value of q is given by

iy = %E;im(l veg) + Bigva(l +e) + . . . +Bigva(l + enﬂ (1 +e)
where

jer] < 3(1.08)(n - 1)2-2¢ r=1,2,...,0
and

frol =27
Hence,

4 = ag(L + €q) + wi
where

il =3(1.06)(n - 12-2t(1 + 2-t)%ﬂﬁi1||vﬂ +|Bygl[v +. . .+ lﬁinll"nﬂ
Thus,

Nleall = [ - aly =2l + ©.002 LvilylBll o

If D represents the exact product 1_3Pi and D represents the computed value
BP;, the (i,j) component of D is given by the following equation:

14



dij = [Bij (1 +nq) - avi( + "?2ﬂ (1 + )

where
o) <2
3 -2t
1y =52
and
< 3 9-2t
Mo} =352
Therefore,

[&ij - di]'l = g-t 'dijl + [% 2'2t|51j|‘ + % 9-2t lquVﬂ + 'ﬁqi”le (1 + % Z‘Zt):] (1+2%Y
and

b - Dl = 2-iDlIg + [% 2-2¢[Bll + 3 2-20) qllivilz + [[oallylivlia(t + 3 2-2t)](1 + 27

As in the premultiplication, this bound would be more convenient and usable if it
could be expressed in terms of ||Bll[g which could then be expressed in terms of |Allg.
From the definition of D, theorem 1, and equation (13), a bound for |[Dllg in terms of
HB“E can be obtained as follows:

IDilg = 1Bl = [IBlIgIRl; = [ + @2-HlBlE
Again, using the bound for % vIv yields the following sequence:
llaltgitvity = L1 2IBlE = 1 vToliBllg = 2(1 + 2-9/1Bllg

Application of equation (18) and the foregoing sequence leads to a bound for “5C1”2NV”23

|[Ballg1vtly < anz[z-ﬁ ally + (0.01)2-t %| ;vuzlll'?:HE]

= (2-9 (@) (1 + 2-81Blg + (0.00(2-t)(2)(1 + 2-Y1IBlIE

= (2.03)2-Y|BlIg

15



Thus,

I - Dilg = 2t + @28 + (1 + z—t)[% 2-2t . 3 2-2t(2)(1 + 2-t)

(1 +52- 2t)(z 03)2 ] Bl g

1A

= (3.04)2-HBll 5 | (19)

An expression for the error in the combined premultiplication and postmultiplica-
tion in terms of |lAllg can now be obtained from the definitions of B, D, and D
(eqs. (13), (16), (17), and (19)) and theorem 1. Application of these definitions results
in the following sequence:

|a; - P;A; (P |A; - BPy|| .. = [|A; - BP; + (B - B)Pj||g

il g | il

= ||A; - BPj||.. + ||(B - B)P|| =D - D[]E +|1B - BHE”Pl['z

illg illg

< (3.04)2- 1Bl + (3.00)2-Y)a; ]| {1 + 2)2-4

= (3.092-4IBllg + (3.05)2-Y|A; ||

= (3.04)2- [IBHE +1IB - B ] + (3.05)2 t“A 1||E

5 (3.04)2-‘5{!:1 @29, (3.04)2'% 1A _1llg + 3.05)27Hja;_yfl

= (3.08)2-Y|A_yf  + (3.05)2-Y)A; )1

Thusg, the bound on the error matrix F;j in equation {14) can be given by

IFillg £ (6.1)2“tHAi-1IIE (20)

Error Analysis of a Sequence of Householder Similarity Transformations

There are several algorithms which require the use of a sequence of Householder
similarity transformations; for example, the reduction of a matrix to Hessenberg form

15



requires a sequence of n - 2 such transformations. This section combines the results
presented in the previous two sections to obtain a bound for the norm of the perturbation

matrix which results from computation of such a sequence.

Apply a sequence of k Householder transformations to a matrix A. When
AO = A, the sequence is denoted by

Aj ~ PiA 1P (i=12 ...k

For each transformation,

Then,
i - p-lp-1 -1 = - ™ = B '
Ag=Prlppl . Pl[Ag# By + FyaEg+ Foa. . .+ B+ FiJPPy. . . Py
where

B = A ip-lp-l -1 .

Ei=P1Pg. . . PiEjAi_1P{1Pia. . . Py i=23,... Kk
and

o.o— w.p-lp-1 -1 ‘ i =

Fi—Plpz.. .P]_F]_Pi Pi-l"'P]. (1—1,2,. ..,k)

If the bounds for Pj, Pj'l, Ej, and F{ are taken from theorems 1, 2, and 3 and from
equations (13) and (20), then

1Bl = [+ @29 fy2-G||A;_yl

and
1| = 1+ (2)2-§|2iﬁs.1)2-fj||[Ai,1||E

From equation {(21) and the bounds for P-l‘l, P;, E;, and F;, the following sequence
results:

Alg = @+ @2-83A g g+ B+ @2 [w2-Ha 4l 5 + 6.02-YA
< {[1 + @2t v @2-20 4 faye-t 4 (gy2-28 & [(6.1)2']} [145-1ll 5 = 1+ (14.102-9||&; 4|
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Therefore,

Bl = I+ @297 w2 g [ asana G A

and
[Fll = b @204 6.2 [1 + (14.11)2-ﬂi‘1[|A0[]E

Applying lemma 1 yields

4]l < < [t + (106)(@) (a-v2° T2 [t + @osyaa.1na-n2-|A|,

< w2t s 877022t 4 (253,619 2-3 IR
and

[ 1+ osy@ @iz [6.02-f 1 + (Los)14.11)G - 1)2_'t]||5to||E

< [_Es.l)z*t £ (117.11)2720 4 (386.'?i2)2'3t]||A0“E

Note that the i and i2 terms have not been deleted since no restriction was placed on
the number of transformations in the sequence and i may be large enough to prevent
those terms from being ignored. Hence,

A =P l(a 4+ z)pP
where

12l g

A
gy

Em.l)z-t +(193.87)i2-2t 4 (640.3)122-3t] Al
1

i

1A

[10.1)k2-t + (97.0)22-2t , (213.5)k32-3¢) 1Al

This bound can be illustrated by the reduction of a matrix to Hessenberg form.
This reduction requires n - 2 Householder transformations, Thus, the bound on the
perturbation matrix Z which yields the exact similarity transformation is given by

12l = [(10. 02t + (97.00n22-2¢ + (213.5)n32-3¢] ] |

Using the assumption given by equation (1) or n2-t <0.006 gives

l1Zll g = (10.6)n2-Y1All

18



This bound may be compared with a bound of (24.72)n2-tl|Al|g given by Wilkinson

(ref. 2), Thus, in a.sense, PyPk_1...P1AP1P3. . . Py is roughly twice as close to
being an exact similarity transformation as it is to being an exact unitary similarity
transformation,

ERROR ANALYSIS OF HOUSEHOLDER TRANSFORMATIONS
IN THE GENERALIZED EIGENVALUE PROBLEM

Because of the development of the QZ algorithm (ref, 7} and the combination shift
QZ algorithm (ref. 8), Householder transformations are being used extensively in solv-
ing the generalized eigenvalue problem Ax = ABX. In this case, the concern is not to
use a similarity transformation but an equivalence transformation, Thus, there are no
perturbations on the original A or B matrix due to the premultiplication or postmul-
tiplication by the Householder transformation P; instead of Pi"l; that is, the E; and
E; matrices in the preceding sections are the zero matrix, However, the error ina
premultiplication given by equation (17) and the error in a postmultiplication given by
equation (19) are still valid in the generalized eigenvalue problem.

Applyto A and B a sequence of k premultiplying Householder transiormations,
denoted by @Q;, and k postmultiplying Householder transformations, denoted by Zj. If
Ag=A and Bgp= B, the sequence is denoted by

1

Aj ~ (QiAi-1)Zi

i=12,.. .,k
Bi - (QiBi-1)Zi

Both the combination shift QZ algorithm and the QZ algorithm proceed in this fash-
ion. For each Q; and Z; transformation,

;\i = (QiAi-l + G-l)zi + Hj = QiAi_lzi + GjZj + Hy (22)
and

Bj = (Qiﬁi-1 + Gi') Zi + Hi' = Q;Bj-12 + G{'Zy + Hy' (28)

where Gj and Gi' are premultiplication error matrices and H; and H;' are post-
multiplication error matrices. Then

I\szka_]_. . .Q1E7&0+al+.1:11+62+f12+. . .+ak+"}'Ik]2122. VAN
and
B = QxQk-1 - - .Q1[f30+é1‘+ﬁ1'+62'+ﬁ2'+. . .+"ék'+ﬁk']zlzz...zk
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where

and

-1

G1=Q1 ¢

G =Qilq;t. . . oflezihzih . . . zqt (i=23,...
B =Qplegt. .. Q'myzilzgl . L Lz i=1,2 ..
Gy’ = QilGy’

&' =QilQst. . .qpleyzihzih, . L . 2yt (i=23,...
H'=QilQsl. . .qpley'zlzl . . .zt i=1,2...

o k)

By taking the bounds for Q4 1, Z{ 1, Gj, and Hj from theorem 2, and using equa-
tions (13), (17), and (19), one obtains

(8l = e @27 ooz Gia, ),

il = [+ a9 pone-S i o

< [+ @29 E3-°4)9't]ﬂlQiHE|’Ai-lllE + HGiHE}

< i+ @2-9% [3.0m2-] {[1 v @2 + (3.04)2'§IIA1_1I|E

= s (z)z-t]m [(3.05)2‘t]||5xi_1HE

From equation (22) and the bounds for Q;, Zj, Gj, and Hj,

Ailg = [1 + (2)2-t] 2||A-1_1|[E + [1 + (2)2-“] [(3.04)2-‘]||Ai_1||E + Es,os)z-t]HA-l_1||E
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Therefore,

[JGill = o+ @2-§% " [s.002- i + (10,128 Aol

[ g = ¢ 2)2-4% [3.09)2 ][1+(101 241 Ag| |

Applymg lemma 1 ylelds : .
[1Gill < [+ (osy@ @i - n2-Y [3.o9)2-] 1 + (Lo&)(10.1)61 - 1)2-t]”A0”E

< [(3.002-t + (45.450)2-2¢ & (138;1012)2-315]{[110“]3

1|, < [t + oa@@n2-] [3.052:] [1 + (1.06)10.1)6 - D2-T|[Ag]|

< |(3.05)2-t + (45.591)2-2t 4 (138.51i2) 2-3t|{|A
| (6092t + 559022t + (138,519 23 Ay |_
I QQx_1...Qp isdenotedby Q and ZyZq...Zp isdenoted by Z, then

A= QA + X)Z

where
IXllg = Z [(6.09)2-t + (91.04)i2-2t + (276.61)122-3t] lAllg
& | , ,
< [6.0K2t + (45.6)k22-2t 4 (92.3)k32—3‘]1|AHE
Similarly, '
B = QB+ V)Z
where

¥l = [6. k2t + (45.6022-2 4 (92.3)k32-31milg

SUMMARY OF RESULTS
Householder transformations have been analyzed with the goal of obtaining new

bounds on the perturbation matrix in a backward error analysis for both the standard and
generalized eigenvalue problems. The important results of this study are as follows:
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1. A bound for the norm of the perturbation matrix was obtained for one Householder
similarity transformation with exact matrix multiplication, That is, if P is a computed
Householder transformation and A = PAP exactly, then A=P- I{A + E)P where

IEllg = (4)2-tiAllg
2, A bound for the norm of the perturbation matrix was obtained for a seguence of
k Householder similarity trangformations. That is, if Pq,P9, . . ., P are computed

Householder transformations, A is the computed PP 1. ..PjAP{Py. . . Py, and
P is defined to be the exact product PyPy. . . Py, then A= P-1{A + F)P where

I Flig < ElO.l)kz't + (97.0x22-2t 4 (213.5)k32-3t]j|A1|E

3. A bound for the norm of the perturbation matrices was obtained for a sequence
of k premultiplying and postmultiplying Householder transformations with regard to the

generalized eigenvalue problem. That is, if Q4,Qg, . . ., Q,%2y,Z9, . . . ,Z, are com-
puted Householder transformations, A is the computed QQ_1- - - QAZ(Zy . . | 7y,
and B is the computed Q1. - - QBZ21Z9 . . . Zy, the generalized eigenvalue

problem Ax = ABx has exactly the same eigenvalues as the problem
(A + G)x =x(B + Hx where

NGl g = ﬁs.l)kz-t + (45.6)k22-2t (92.3)k32-3*1]|lAHE
and

IHIIg = [i6.0k2-t + (45.6)k22-2t 1 (92.3)K32-34] B/

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va,, October 17, 1974,
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